Here, we  provide a list of selected papers devoted to practical applications of Virial's software and/or based on Virial's developments. If you are interested in pdf papers from this list, please send us email request. You must include your salutation (Mr., Ms., Mrs., Dr., etc.), full name, email address, your position, and affiliation. Do not forget to specify the number of the paper. No more than three items per request, please.



1. Q. Fan et al., "New shape of blackbody cavity: conical generatrix with an inclined bottom," Opt. Eng. 51, 086401 (2012).

2. P. J. Gero et al., “On-orbit absolute blackbody emissivity determination using the heated halo method,” Metrologia 49, S1-S8 (2012).

3. P. Bloembergen et al., “A Determination Study of the Cavity Emissivity of the Eutectic Fixed Points Co-C, Pt-C, and Re-C,” Int. J. Thermophys. 32, 2623-2632 (2011).

4. P. Castro Alonso, “High Temperature Fixed Points: Investigation of Influence Parameters on the Temperature Uncertainty by Thermal Modelling,” Doctoral Thesis, Universidad de Valladolid, Escuela Técnica Superior de Ingenieros Industriales, Valladolid, Spain (2011).

5. H. Ko, "Standard source for skin type clinical thermometers," Proc. of SICE Annual Conference 2010, 18-21 Aug. 2010, 2675-2677 (2010).

6. P. J. Gero et al., “On-orbit Absolute Blackbody Emissivity Determination Using the Heated Halo Method,” Proc. SPIE 7857, 78570L-1 - 78570L1 (2010).

7. T. M. Ojanen, "Spectral Irradiance and Radiation Temperature Scales," Abstract of Doctoral Dissertation, Aalto University, Espoo, Finland (2010).

8. Hsin-Yi Ko et al., A High-Emissivity Blackbody with Large Aperture for Radiometric Calibration at Low-Temperature,” Int. J. Thermophys. 30, 98-104 (2009).

9. S. A. Ogarev et al., Low-Temperature Blackbodies for IR Calibrations in a Medium-Background Environment,” Int. J. Thermophys. 30, 77-97 (2009).

10. K. D. Hill and D. J. Woods, Characterizing the NRC Blackbody Sources for Radiation Thermometry from 150 °C to 962 °C,” Int. J. Thermophys. 30, 105-123 (2009).

11. P. Bloembergen et al., Spectral and Total Effective Emissivity of a High-Temperature Fixed-Point Radiator Considered in Relation to the Temperature Drop Across its Back Wall,”  Int. J. Thermophys. 29, 370-385 (2008).

12. S. P. Morozova et al., Vacuum Variable-Temperature Blackbody VTBB100,” Int. J. Thermophys. 29, 341-351 (2008).

13. F. Liebmann and M. A. Cabrera Carrasco, "Infrared Uncertainty Budget Determination in an Industrial Application" Proc. of Simposio de Metrología, 1198-1 - 1198-7 (Mexico 2008).

14. F. Liebmann, “Infrared calibration development at Fluke Corporation Hart Scientific Division,” Proc. SPIE 6939, 693906-1 - 693906-11 (2008).

15. P. J. Gero, J. A. Dykemaa, J. G. Anderson, and S. S. Leroy, "On-orbit characterization of blackbody emissivity and spectrometer instrument line-shape using quantum cascade laser based reflectometry," Proc. of SPIE 7081 70810Q, 70810Q1-70810Q11 (2008).

16. M. Ojanen et al., Filter Radiometers as a Tool for Quality Assurance of Temperature Measurements with Linear Pyrometers,” Int. J. Thermophys. 29, 1084-1093 (2008).

17. P. R. Dekker and E. W. M. van der Ham, ITS-90 Scale Realization on the New Radiation Thermometer Calibration Facility at NMi VSL,Int. J. Thermophys. 29,1001-1013 (2008).

18. F.Liebmann, "Infrared Thermometer Calibrator Development at Fluke Corporation Hart Scientific Division," NCSL International Workshop and Symposium - 14 pp. (2007).

19. E. Usadi, "Reflecting cavity blackbodies for radiometry," Metrologia 43 , S1-S5 (2006).

20. C.-W. Park et al., "Accuracy improvement in the source-based calibration of radiative heat flux sensors by consideration of the temperature non-uniformity of the high temperature blackbody," Metrologia 43, 135-141 (2006).

21. V. I. Sapritsky et al., "Variable and fixed-point blackbody sources developed at VNIIOFI for precision measurements in radiometry and thermometry within 100K…3500K temperature range," Proc. SPIE 6297, 629710-1 - 629710-11 (2006).

22. S.-F. Tsai, H.-Y. Ko, B.-J. Wen, C.-C. Li, "Standard Blackbody for Infrared Tympanic Thermometers," Simposio de Metrología 2006, Santiagp de Querétaro, Qro. México, Oct. 25-27,  1-4 (2006).

23. S. A. Ogarev et al., “Blackbody sources within 100 - 1000 K temperature range for precision calibration of space-borne instruments,” IEEE IGARSS, 2224-2226 (2006).

24. F. A. Best et al., “Performance Verification of the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) On-board Blackbody Calibration System,” Proc. SPIE 6405, 64050I-1 - 64050I-10 (2006).

25. A V. Murthy, G. T. Fraser, and D. P. DeWitt, “Experimental In-Cavity Radiative Calibration of High Heat-Flux Meters,” J. Thermophys. Heat Transfer 20, 327-335 (2006).

26. H.-Y. Ko, J. Lin, H.-M. Tai, “Hand-carry Blackbody Calibrator for Infrared Ear Thermometer,” Proc. TEMPMEKO 2004 2, 989-994 (2005).

27. A.G. Steele, N.L. Rowell, and A.L. Reesink, “Fourier Transform Blackbody Thermometry: Emissivity and Detector Linearity,” Proc. of TEMPMEKO 2004 1, 515-520 (2005).

28. M. Noorma, "Development of Detectors and Calibration Methods for Spectral Irradiance and Radiometric Temperature Measurements," Dissertation for the degree of Doctor of Science in Technology, Helsinki University of Technology, Helsinki, Finland (2005). 

29. M. Noorma, “Absolute Detector-based Radiometric Temperature Scale,” Proc. TEMPMEKO 2004 1, 101-106 (2005).

30. M. R. Dury et al., "The NPL Wide-Are MIR Calibration Source," Proc. SPIE 5405, 532-540 (2004).

31. H. C. McEvoy et al., “Comparison of the New NPL Primary Standard Ag Fixed Point Blackbody Source with the Primary Standard Fixed Point of PTB,” Temperature: Its Measurement and Control in Science and Industry, v. 7, edited by Dean C. Ripple, 909-914 (2003).

32. P. Bloembergen et al., “A Study on the Instrument-oriented Characterization of Low-Temperature Radiation Thermometers,”  Proc. TEMPMEKO 2001, 723-728 (2002).

33. Y. H. Zhou, Y. J. Shen, Z. M. Zhang, B. K. Tsai, and D. P. DeWitt, "A Monte Carlo model for predicting the effective emissivity of the silicon wafer in rapid thermal processing furnaces," Int. J. Heat Mass Transfer 45, 1945-1949 (2002).

34. A. V. Murthy, B. K. Tsai, and R. D. Saunders, “Calibration of a Heat Flux Sensor Up to 200 kW/m2 in a Spherical Blackbody Cavity,” Thermal Measurements: The Foundation of Fire Standards, v. 1427, ASTM International, West Conshohocken, PA (2002).

35. S. Galal Yousef, P. Sperfeld and J. Metzdorf, “Measurement and calculation of the emissivity of a high-temperature black body,” Metrologia 37, 365-368 (2000).

About Virial's Software