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1. Key Features of Satori111 

 

Satori111 is intended for calculation of parameters in the Sakuma-Hattori interpolation equation and 

can be used at radiometric temperature calibration of radiation thermometers (pyrometers) and 

blackbody radiation sources by multiple-point method. 

 

Calculation of Sakuma-Hattori parameters is performed using the Levenberg-Marquardt method then 

verified by the Particle Swarm Optimization.  

 

Satori111 allows fitting the Sakuma-Hattori equation for up to 20 reference temperatures from 100 to 

4000 K with the fitting error not exceeding 1 mK for narrow-band radiation thermometers and 100 mK

 for wide-band radiation thermometers.  

 

After determination of the Sakuma-Hattori parameters, up to 1000 signals of the radiation 

thermometer can be converted into temperatures at once. 

 

Satori111 stores the initial data and calculation results in built-in expandable database and represent 

then in the spreadsheet and customizable and editable graph forms. Data can be copied into the 

clipboard, exported as text (ASCII), XLS, XML, and HTML table; graphs can be copied into the 

clipboard, saved as bitmap or Windows metafile, and printed out. 

 

 

Minimal requirements for hardware and software are: 

 

Processor frequency  1 GHz 

RAM    3 GB 

Hard disk space  10 MB 

Operation system  Windows XP and 7 (32 and 64-bit), Windows 8 in Compatibility Mode 
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2. Introduction 

 

Radiation thermometry (pyrometry) is the science and technique for non-contact measurements of 

temperature using thermal radiation emitted by the object. Temperature measured with radiation 

thermometer can be expressed in various temperature scales such us Kelvin, Celsius, and Fahrenheit. 

 

Thermodynamic (absolute) temperature is one of the principal physical quantities in thermodynamics. 

It can be derived from fundamental physical laws but its measurement is hard to implement throughout 

temperature range wide enough for practical applications. The International Temperature Scale of 

1990 (ITS-90) [1] is an approximation of the thermodynamic temperature scale designed to facilitate 

temperature measurements and provide comparability and compatibility of results which can be 

expressed in Celsius degrees or kelvins. ITS-90 provides equipment calibration standard and includes 

17 established calibration fixed points (phase transitions of pure substances), to which temperatures 

T90 from 0.65 K to ≈1358 K (from -272.5 °C to ≈1085 °C) are assigned. Various thermometer types 

cover this range of temperatures: helium vapor pressure thermometers, helium gas thermometers, 

standard platinum resistance thermometers, and monochromatic radiation thermometers. Table 1 

shows fixed points and subranges of ITS-90.  

 

ITS-90 implies application of radiation thermometry above freezing point of silver. This means that 

for temperatures greater than 1234.93 K, measurements of temperature  can be conducted using the 

linear pyrometer and the following extrapolation equation: 

90T
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where  refers to any one of the silver { XT90   K93.123490 AgT }, the gold {T , 

or the copper {

  K33.1337Au90  }

  K77.1357Cu90 T } freezing points;  90T  L and   XT90 aL re the spectral 

concentrations of the radiance of a blackbody at the wavelength (in vacuo)   at nd at 90T a  X90  T

respectively; c  is the 2nd radiation constant in the Plank law. 2
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Table 1. Defining fixed points and subranges of the ITS-90. 

 

Temperature 
T90 (K) T90 (ºC) 

Substance State 

3…5 -270.15…-268.15 He Vapor pressure point 
13.8033 -259.3467 e-H2 Triple point 
≈17 ≈-256.15 e-H2 (or He) Vapor pressure point (or 

gas thermometer point) 
≈20.3 ≈-252.85 e-H2 (or He) Vapor pressure point (or 

gas thermometer point) 
24.5561 -248.5939 Ne Triple point 
54.3584 -218.7916 O2 Triple point 
83.8058 -189.3442 Ar Triple point 
234.3156 -38.8344 Hg Triple point 
273.16 0.01 H2O Triple point 
302.9146 29.7646 Ga Melting point 
429.7485 156.5985 In Freezing point 
505.078 231.928 Sn Freezing point 
692.677 419.527 Zn Freezing point 
933.473 660.323 Al Freezing point 
1234.93 961.78 Ag Freezing point 
1337.33 1064.18 Au Freezing point 
1357.77 1084.62 Cu Freezing point 

 

Methods of radiation thermometry is also used below the silver point [2], for instance, for non-contact 

measurements of human body temperature, in infrared detection and recognizing of targets, for various 

industrial applications etc. The fixed-point blackbody radiation sources operating in the temperature 

range from Hg to Cu freezing temperatures are used for this purpose as well as precision variable-

temperature blackbodies [3] working at intermediate temperatures and playing the role of secondary 

standards.  

 

Extrapolation using Planck’s law recommended by ITS-90 for temperature above the Silver point does 

not satisfy continuously growing modern requirements to reliability and repeatability of high-

temperature radiation temperature measurements. This dictates the necessity of developing fixed-

points references for temperatures greater than the freezing point of Copper. Currently, the question of 

introducing additional fixed points (e.g., melting temperatures of some metal – carbon and metal 

carbide – carbon eutectic alloys) in the future temperature scale is actively discussed [4-6]. Currently, 
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such unofficial secondary fixed points are already introduced into industrial laboratories to improve 

temperature calibration above the silver point. Table 2 lists some high-temperature metal – carbon and 

metal carbide – carbon eutectics together with their approximate phase transition temperatures [7].  

 

Table 2. Approximate transition temperatures  
of some metal – carbon and  

metal carbide – carbon eutectics [7]. 
 

Approximate Temperature 
Eutectic 

T90(K) T90(ºC) 
Fe-C 1426 1153 
Co-C 1597 1324 
Ni-C 1602 1329 
Pd-C 1765 1492 
Rh-C 1930 1657 
Pt-C 2011 1738 
Ru-C 2227 1954 
Ir-C 2564 2291 
Re-C 2747 2474 
B4C-C 2659 2386 
δ(MoxC1-x)-C 2856 2583 
TiC-C 3034 2761 
ZrC-C 3155 2882 
HfC-C 3458 3185 

 

 

 

 

The phase transition temperatures of eutectic alloys are not a part of any 
standard document yet, so they are shown in Table 2 for illustrative 
purposes only. 
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3. Theory Basics 
 

3.1. Multiple-Point Calibration Technique 
 

If several reference temperatures near the measured one are available, instead of extrapolation, one can 

apply interpolation technique which depends less on the linearity of a pyrometer and intrinsic non-

linearity of Planck’s radiation law. The signal of a radiation thermometer aimed at a blackbody 

having temperature 

S

T is equal to 

 

     



0

, ,   dTLRTS bb ,                                                       (2) 

 

where  TL bb ,,   is the Planck function at wavelength   and temperature T ;  R  is the absolute 

spectral responsivity of the radiation thermometer. 

 

It is supposed, that  R  includes such factors as the effective emissivity of the blackbody radiation 

source, the optical path transmittance, amplifier gain, etc. Since temperatures above the Silver point 

are determined, according to ITS-90 via the ratio of signals at the unknown temperature and at the 

reference temperature of the silver, gold, or copper fixed point, it is enough to know only the relative 

spectral responsivity: 

 

   

 


0




dR

R
r ,                                                              (3) 

 

which can be measured easier and more reliable than the absolute spectral responsivity. 

 

For the calibration of radiation thermometers near 0.65 µm, a tungsten strip lamp calibrated against a 

fixed-point blackbody is often used. For greater wavelengths, due to the large variability of spectral 

responsivity curves for different types of the infrared radiation thermometers, the calibration against 

the lamp becomes problematic. In the infrared spectral range, variable-temperature blackbodies are 
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employed instead of temperature lamps. Accurate temperature measurements via the ratio of the 

spectral radiances require knowledge of the relative spectral responsivity, since most important 

components of the uncertainty in the radiometric temperature measurements are conditioned by the 

uncertainty of the relative spectral responsivity determination. However, measurements of the relative 

spectral responsivity for the calibration of each radiation thermometer are ineffective and impractical. 

To resolve this issue, pyrometer readings for several (usually, 3-5) temperatures should be obtained for 

subsequent interpolation. The main problem here is the choice of the appropriate interpolant, i.e. a 

function linking pyrometer’s signal and measured temperature. Interpolant must contain several 

adjustable parameters; the number of parameters must be small enough to not embarrass their 

determination during pyrometer’s calibration but provide sufficient flexibility. This approach is often 

referred to as the multiple point calibration method. 

 

The fixed-point blackbodies, as a rule, provide the best approximation to the perfect blackbody and the 

least uncertainty in temperature determination. However, other precision blackbody radiation sources 

(such as heat-pipe and liquid-bath blackbodies) can be used for multiple point calibrations if 

temperatures of radiators are well-defined or traceable to national temperature standards. 

 

The use of several precision blackbody radiation sources allows not only deriving the calibration 

equation of the radiation thermometer but also performing the temperature calibration of less-precise 

laboratory blackbodies.  

 

For the temperature range above the Silver point, the main causes limiting the precision of temperature 

extrapolation are the non-linearity of the dependence of  TS  which, in turn, depends on the shape of 

 r , and non-linearity of the radiation thermometer itself. Introducing high-temperature eutectic 

fixed points into measurement practice allows employing them as reference points for calibrating 

radiation thermometers and blackbodies for temperatures up to almost 3000 K using multiple point 

techniques. Therefore, choosing of an appropriate interpolant for a wide temperature range becomes 

even more pressing.  

 

A number of empirical equations were developed to this end (see, e.g., [8-10]) and were successfully 

used for specific wavelength and temperature ranges and for solution of specific measurement tasks. 
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However, since most empirical interpolants are not based on general physical assumptions, they have 

limited areas of applicability.  

 

It is known that one can find a polynomial of degree  passed exactly through arbitrary 

points on the plane. This means, particularly, that for  pairs of values 

0n

m

1n

 TS ,  one can always find 

coefficients for polynomial interpolant of degree 1m  that passes exactly through the measured 

points. Even if errors in determination of each pair  TS ,  are known and the Maximum Likelihood 

principle (e.g., least square method) is used, there is no guarantee that such an interpolation is 

physically plausible or gives the best (in some sense) estimate to the actual temperature of the 

blackbody under measurement. Thence, the interpolant should be physical-based, what means that the 

adjustable parameters should be directly related to properties of the radiation thermometer. 

 

3.2. The Sakuma-Hattori Equation 
 

Sakuma and Hattori [11] proposed the equation that expresses the signal of the radiation thermometer 

as a function of blackbody temperature and can be written in form: 
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where is the 2nd radiation constant in the Plank law, and C are 

adjustable constants (curve-fitting parameters). 

m·K10 31.43877701 -2
2 c ,, BA

 

Eq. (4) is known as the Sakuma-Hattori equation. Resolving Eq. (4) for temperature gives the inverse 

Sakuma-Hattori equation: 
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Parameters nd C can be found unambiguously if measurements are conducted for at least 3 

temperatures. For 3 temperatures, the curve expressing Sakuma-Hattori equation will pass through 

reference points; if there are more than 3 reference points and the least square technique is applied, the 

curve will be drawn in such a way that the sum of squared curve-point distances  

,, BA a
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n

i
ii CBASTT                                                                 (6) 

 

will be minimal. Here and below,  is the number of n  TS ,  pairs. 

 

The minimal value of is reached at the same values of nd C s for 2 ,, BA a a


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The convenient quantitative measure of the interpolation procedure is the root-mean-square (RMS) 

deviation:  

 

  
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,,,
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


n

i
iiT CBASTT

n
 .                                                     (8) 

 

 

RMS deviation T  is not an uncertainty of measurement or calibration. 
The value of T  characterizes only the curve fitting quality.  

 

 

Currently, calibration of low-temperature wide-band pyrometers and variable-temperature blackbodies 

using multiple points approach with the use of Sakuma-Hattori equation and fixed points of ITS-90 

below the Silver point is realized in many national metrological centers and industrial laboratories [12-

16] and regulated by national standards (see e.g., [17, 18]). Multiple fixed point calibration method 

propagates its applicability toward the higher temperatures as high-temperature fixed points are 

introduced into the practice of radiation thermometry.  
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Interpolation errors of the Sakuma-Hattori and less common interpolants were investigated in Refs. 

[19, 20]. 

 

Condition  min  is equivalent mathematically to the system of three equations: 

 



 












0;0;0
CBA


.                                                                    (9) 

 

Although the partial derivatives in the system (9) can be found analytically, the resulting system of 

non-linear equations can be solved only numerically. Despite the seeming simplicity of Eqs. (4) and 

(5), numerical solution of system (9) or equivalent minimization problem for expression (6) are not a 

trivial problem. Two-dimensional plots in Figs. 1 and 2 provide an indication of the complexity of the 

minimization problem encountered by researchers. These plots were made on the base of two 

examples included into the database of the Evaluation version of the Satori111 (records “4ITS-

90_303-693_11, 6” and “4Eut_2856-3453_0_5, 0_05”). Parameters nd C were determined 

using the Satori111, then it was supposed that 

,, BA a

constC and  was plotted as a function of two 

variables  and A B . Such a complicated shape of the objective function  requires the robust 

numerical algorithm to avoid the divergence of the computational process and prevent its false 

convergence to the local minimum in proximity of the initial guess.  

 

The majority of numerical algorithms for finding  min  as well as for the equivalent task of solving 

the non-linear system (9) require good choice of the initial guess (starting point, or zero 

approximation). Otherwise, if the objective function is not “good” enough, they may lead to wrong 

solutions, or even diverge at all as it takes place for the objective function whose A-B slices are 

depicted in Figs. 1 (for the wide-band infrared radiation thermometer) and Fig. 2 (for the narrow-band 

radiation thermometer with the mean wavelength of 0.5 µm). 

 

 

 

 

 11



Satori111  Manual  · Copyright © 2013 Virial International, LLC 

 

 

 

Fig. 1. 3-D surface of  BA,  for the record “4ITS-90_303-693_11, 6”. 

The  min  is reached at 0.0017269172.94982,9.366866  CB,A . 

 

 

 

Fig. 2. 3-D surface of  BA,  for the record “4Eut_2856-3453_0_5, 0_05”. 

The  min  is reached at 563.2846990851,0.50261322  C,.-BA . 
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P. Saunders and R. D. White [21] proposed initial guesses for parameters nd C that are based on 

the concept of the pyrometer’s effective wavelength and the physically plausible assumptions 

concerning its temperature dependence: 

,, BA a
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Here  is the first radiation constant in the Planck law; 1c 0 denotes the mean wavelength of the 

spectral responsivity curve;  is its variance. Relationships between the variance  and other

convenient characteristics of the spectral responsivity curve shape, FWHM (full width at half 

maximum) are given in Ref. [21] for such shapes as rectangular, triangular, Gaussian, and some 

others. 

, more 

 

Eq. (12) includes  R  what makes it inconvenient for practical use. Instead, the Satori111 computes 

s the mean value: 0C a
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It should be noted that according to Eq. (11) , but the resulting 00 B B can be negative.  

 

Rigorous mathematical definition of mean value and variation require knowledge of spectral 

dependence for the spectral responsivity and their integration; however, the easily evaluable FWHM 
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value can be used instead of variance  . We will use the term bandwidth for a width-like measure of 

the spectral responsivity curve and Saunders-White initial guess for the initial parameters of the 

Sakuma-Hattori equation computed according to Eqs. (10), (11), and (13). 

 

Determination of Sakuma-Hattori parameters corresponds to the calibration stage of the measurement 

process. As soon as parameters nd C are found, it is possible to compute unknown temperature ,, BA a

T using the measured signal S and the inverse Sakuma-Hattori equation (5). This interpolation 

procedure corresponds to the measurements stage. 

 

Such an approach is generally used only when unknown temperature point lies between the extreme 

end points, i.e. for interpolation only. Extrapolation beyond these points is considered as less safe 

operation. However, as it has been shown in Refs. [22, 23], if the fixed-points have low enough 

uncertainties and the temperature difference between the highest calibration point and the extrapolated 

point is small enough, the extrapolation uncertainty in temperatures determined can be comparable 

with the uncertainty of interpolation within the temperature range under consideration. 

 

Satori111 finds calibration parameters nd C in the Sakuma-Hattori interpolation equation using 

two independent methods: the Levenberg-Marquardt and the Particle Swarm Optimization. 

,, BA a

 

3.3. The Levenberg-Marquardt Method 
 

The Levenberg-Marquardt (LM) method is a numerical method that provides minimizing a nonlinear 

function of several variables [24, 25]. Such minimization problems are typical in least squares curve 

fitting. Due to its robustness, the LM method has become a standard technique for nonlinear least-

squares problems and has been used in various numerical mathematics packages for solving non-linear 

curve-fitting problems.  

 

The LM method can be considered as a hybrid of the steepest descent and the Gauss-Newton 

algorithms. In the nonlinear least squares minimization for which the LM method provides a solution, 

the function to be minimized (so-called objective function) has the following form: 
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where   is a vector;  is a residual; it is assumed that .  nxxxx ,...,, 21 jr nm 

By introducing the residual vector         x,...,rx,rxrxr m21 , one can rewrite Eq. (14) in vector form: 
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The partial derivative can be collected into the Jacobian matrix: 
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If we consider the case where every  function is linear, the Jacobian is constant and one can 

represent 

ir

r  as a hyperplane in m -dimensional space and F  as the quadratic form 

 

    2

2

1
0rJxxF  . 

 

Next, one can obtain  and    rJxJxF T    JJxF T2 . The minimum can be found by setting 

. As a result, we obtain the solution of the system of normal equations:   0 xF   rJJJx TT 1

min


 . 

By analogy, in the non-linear case, we obtain: 
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The important feature of the least square problem is a possibility of deriving the Hessian  xF2  fro

the Jacobian J if al rj
2 mall or all residuals 

m 

l  are s x  xrj  are small (for large residuals, linear 

approximation can be insufficient; therefore, the performance of the LM algorithm can decrease in 

such cases). Then the Hessian equals 

 

 

     xJxJxF T2 ,                                                      (19) 

 

i.e., the result coincides with that for the linear case. 

 

The conventional gradient descent is the simplest iterative technique for finding a minimum of a 

function. At (k+1)th step, solutions are updated by subtraction of the scaled gradient: 

  

 kkk xFxx  1 . 

 

However, the gradient descent method has some convergence problems. To accelerate convergence, it 

is desirable to set a large step where the gradient is small. From the other side, setting too large step 

for areas where the gradient is large may lead to skipping the minimum. Besides, the curvature of the 

error surface (objective function growth rate) can be different in different directions. For example, if 

there is a long and narrow valley in the error surface, the component of the gradient in the direction 

that points along the base of the valley is very small while the component along the valley walls is 

quite large. This results in motion more in the direction of the walls even though we have to move a 

long distance along the base and a small distance along the walls. This situation can be improved upon 

by using curvature as well as gradient information, namely second derivatives. One can do this using 

the Newton method to solve the equation   0 xF . 

 

Expanding the gradient of  using a Taylor series around the kth point k , one can write: F x

 

         kkkTkkkk xxxFxxxFxF   1211  .                                (20) 
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If is the quadratic form around k , one can neglect the higher order terms and solve Eq. (2) for the 

minimum 

F x

x  by setting the left-hand side of Eq. (20) to zero, one can write the update rule for 

Newton’s method: 

 

    kkkk xFxFxx 
 121 .                                                 (21) 

 

Since Newton’s method implicitly uses a quadratic assumption on  (arising from the neglect of 

higher order terms in a Taylor series expansion of ), there is no necessity to exactly evaluate the 

Hessian but one can use the approximation (19). The main advantage of this technique is rapid 

convergence. However, the rate of convergence is sensitive to the starting location (or more precisely, 

the linearity around the starting location). It can be seen that simple gradient descent and Gauss-

Newton iteration are complementary in the advantages they provide. Levenberg proposed an algorithm 

based on this observation, whose update rule is a blend of the above mentioned algorithms and is 

given as 

F

F

 

   kkk xFIHxx   11  ,                                                     (22) 

 

where H  is the Hessian matrix evaluated at k , x I  is the identity matrix. This iterative process works 

as follows. If, after the current iteration, the error decreases, one can consider the assumption about 

quadratic growth rate for  fulfilled and one can reduce  xF   (e.g., to 10 times) to weaken the 

influence of the gradient; if the error increases,   has to be in

influence. If the error has decreased after the n  iteration, the step is accepted and 

creased to strengthen the gradient 

ext   decreases. 

Iteration ends when the convergence is achieved (that is kk xx 1  become all 

value 

s less that a given sm

 ), or if a maxima er of iterations  is reached. In the original Levenberg algorithm 

[26], for large values of 

l numb maxN

 , the Hessian ma lculated but not affect the ite esult. D. 

 the iden

 

trix is ca ration r

Marquardt [27] replaced tity matrix in Eq. (22) with the diagonal of the Hessian matrix. This 

heuristic substitution leads to larger movement along the directions where the gradient is smaller what

allows overcoming the “error valley” problem by scaling each gradient’s component according to the 

curvature of the objective function. The LM iteration process is expressed as 
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    kkk xFHHxx   11 diag .                                              (23) 

 

atori111 employs a simplified but very fast version of the LM algorithm similar to that described in S

[28]. Two parameters that determine the stop conditions of the algorithm are Maximal Number of 

Iterations ( maxN ) and Tolerance ( ). Their default values are 50 and 10-9, respectively. In most cas

there is no n ssity to change them. 

 

es, 

ece

lthough the LM method is a wide-spread curve-fitting algorithm, it guarantees finding only a local, 

  

.4. The Particle Swarm Optimization Algorithm  

article swarm optimization (PSO) is a biologically inspired, population-based, heuristic search and 

f 

, 

 PSO only requires knowledge of lower and upper allowed values for each variable instead of its 

rinciple) to the global optimization problem.  

he original PSO algorithm [29] is based on the metaphor that had two cognitive aspects, individual 

e 

A

not a global minimum. Therefore, it is essential to verify the solution obtained by the LM method 

using another, independent method which is able to find the global minimum, at least, in principle.

 
 

3
 

P

optimization method developed in by and Kennedy and Eberhart [29] and based on social behavior o

birds flocking or fish schooling. PSO imitates such a behavior by random movement of “particles” in 

the multidimensional search space. The movements of the particles are determined by their individual 

best-known positions as well as the best-known position for a swarm as a whole. Currently, PSO is 

indispensable algorithm for solving various optimization problems including those with non-convex

non-smooth, and multimodal objective functions. It compares favorably with the best deterministic 

algorithm because: 

 



“good” zero approximations.  

 PSO is applicable (at least, in p

 PSO is a derivative-free method. 

 

T

learning and learning from entire group of particles. When a particle determines its behavior, it can us

its own experience and the experience of other particles to move itself toward the solution.  
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 x
x

f


minIf the optimization problem is posed as , and there is a set of particles used to search the 

mum, th g 

 swarmn

design space for a function’s global mini en each particle moves through the space by updatin

its position with a velocity that accounts for the best position that particle has found and the best 

position found by all particles. The original updating rule in Ref. [29] is 

 

   














swarmtjtjtj

kjktjtj

nj

uaua

...,,2,1,

,

1,,1,

2211,1,

vxx

xgxpvv 
                                    (24) 

 

here  indicates the iteration number,  t jw  indicates the particle number in the swarm,   is an inertia 

weighting term, 1a and 2a are scalar cons nts, 1u  and 2u  are random numbers uniformly distributed in 

(0,1], x  and v  are vectors that indicate the position an  velocity of a particle, respectively, kp is the 

best position found by the thj  particle, and 

ta

d

g  is the best position found by all particles in the swarm.  

 

Clerc and Kennedy [30] modified the PSO algorithm to accelerate its convergence by eliminating the 

inertia weighting term and using a constriction factor instead. The equation for velocity updating is 

transformed into 

 

    iiktjtj uaua xgxpvv  2211,1,  ,                                         (25) 

 

herw e  is the constriction factor defined as 

 




42

2
2 

 ,                                                                  (26) 

 

, and  2,0421  aa  governs the convergence rate of the iteration process. Clerc and 

Kennedy [30] recommended the value 1.4 . Satori111 implemented this algorithm for 1 . 

 

More details on various modifications of the PSO method can be found in Ref. [31]. 
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Although PSO does not guarantee locating the global minimum, the probability of its detection is very 

 

he search domain for Sakuma-Hattori parameters and is defined in Satori111 as 

high at the optimal tuning of the algorithm. To avoid stagnation and convergence to wrong solutions 

(local minima) Satori111 uses multiple restarts strategy, for which the swarm initialization by random

positions and zero velocities is repeated restartsN  times. The default value 10restartsN can be modified 

by assigning any integer value in the range [1, 1000].  

 

T ,, BA C

 

 
 

























,

,

,,max

,,min

,

,

0max

0min

00max

00min

0max

0min

ECC

ECC

EBEBB

EBEBB

EAA

EAA

                                                      (27) 

 

here  and are Saunders-White initial guesses computed using Eqs. (10), (11), and (13); w  00 , BA

1000

0C

1  E  is the Search Range parameter; the default value of E is 2.0. 

 

he convenient measure of the fitting quality for both LM and PSO methods is the Mean RMS that is T

computed as 

 

  
2

1

,,,
1

RMSMean 



n

i
ii CBASTT

n
,                                          (28) 

 

here  is computed using the inverse Sakuma-Hattori equation.   CBAST i ,,,w

 20



Satori111  Manual  · Copyright © 2013 Virial International, LLC 

4. Working with Satori111 

 

4.1. Installing Satori111 
 

Satori111 does not require special installation. Evaluation version of Satori111 is downloadable from 

www.virial.com. Download Satori11.zip and unzip the archive at any convenient place of your hard 

disk. Do not change mutual arrangement of subfolders in Satori111 folder. To start working with 

Evaluation version run Satori111.exe. The main window shown in Fig. 3 will appear. 

 

 

Fig. 3. The main window of Satori111 Evaluation version. 

 

Satori111 will work in the Evaluation mode until its activation. The Evaluation version differs from 

the full-functioned program at only one point: the Evaluation version does not allow to enter new 

records into the database intended for permanent storage of initial data and results of calculations. In 

the Evaluation mode, the database contains only demo examples that, nevertheless, give and idea of 

Satori111 functionality and principles of operating. 

 

To activate the Evaluation version, you have to purchase the license and obtain the activation key. If 

you already did this, click the “Activate” button. The Activation window shown in Fig. 4 will appear. 

Enter your activation key then click “OK”. Fig. 5 shows the main window of Satori111 after 

activation. 
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Fig. 4. The Activation window of Satori111. 

 

 

 

Fig. 5. The main window of Satori111 after activation. 

 

Now, everything is ready to start working with Satori111. 

 

4.2. Satori111 Database 
 
Initial data and results of calculations are permanently stored in the database. Its file satori111.dbs is 
in DB folder. Information containing in the database is represented in tabular form. The Satori111 
database is presented in two tables or spreadsheets. The first table is placed in the left part of the main 
window and contains three columns: “Record Name”, “Created” and “Processed”. Only the first 
column is editable. Above the table, there are the field for incremental search by the record name and 
the sorting order switch. 
 
The second table is placed in the tabbed page “Calibration” in the right part of the main window and 
contains the columns described in Table 3. 
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Table 3. Column description for the table shown in the right part of Fig. 5. 
 
Column caption Field description 

Signal 
The signal (in arbitrary units) of the radiation thermometer aimed at the 
reference blackbody. 

T (K) The temperature (in kelvins) of the reference blackbody. 

TLM (K) 
The interpolated temperature (in kelvins) computed by the Levenberg-
Marquardt (LM) method for the reference blackbody. 

TPSO (K) 
The interpolated temperature (in kelvins) computed by the Particle Swarm 
Optimization (PSO) method for the reference blackbody. 

T – TLM (mK) 
The difference (in millikelvins) between the true temperature of the reference 
blackbody and its interpolated temperature computed by the LM method. 

T – TPSO (mK) 
The difference (in millikelvins) between the true temperature of the reference 
blackbody and its interpolated temperature computed by the PSO method. 

TLM – TPSO (mK) 
The difference (in millikelvins) between the interpolated temperature of the 
reference blackbody computed by the LM method and those computed by the 
PSO method. 

 
Besides, there is the third table placed on the tabbed page “Interpolation” in the right-hand side of the 
main window (see Fig. 6). This database records contain two fields: the signal of radiation 
thermometer and the temperature calculated using Sakuma-Hattori interpolation. 
 
 

 
 

Fig. 6. The tabbed page “Interpolation.” 
 

Below every table there are buttons “Load”, “Save” and “Erase” (or some of them) which allows 
loading from text file, saving to text file, and erasing a continuous sequence of records at once, 
respectively. 
 
After clicking “Erase”, the window shown in Fig. 7 will appear. After choosing which records have to 
be deleted and clicking “OK”, you will be asked for confirmation. Deleted records cannot be restored.  
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Fig. 7. Erasing multiple records. 
 

 
Below every table, there is the Database Navigator – the control that provides access to and 
manipulation with a selected record (see Fig. 8). 
 
 

 
 

Fig. 8. The Database Navigator. 
 
 

4.3. Entering Initial Data 
 

 
To enter a new record into the database, first you have to prepare the text (ASCII) file and place them 
into the folder Satori111\Data\Input. In the same folder, you can find examples of such files that are 
organized as follows: 
 
   1.5000 // Mean wavelength in um 
   0.0500 // Bandwidth in um 
4 // Number of reference points 
8.27536015580768E-5 933.473 
0.00101641821681237 1234.93 
0.00184215657521917 1337.33 
0.00205221073718258 1357.77  
 
The first and the second lines must contain the mean wavelength and the bandwidth, respectively, of 
the spectral responsivity curve in micrometers. The number of reference points should be specified in 
the third line. Next lines must contain signals, , (in arbitrary units) and temperatures, , (in 

kelvins) for the reference points whose number is indicated in the third line. Values of  and  

should be separated by at least one space or <Tab> symbol. Text starting from double slashes is 
optional; it can be omitted. Such a text file can be prepared in the Windows Notepad or similar text 
editor. 

iS iT

iS iT
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Once this text file is prepared and saved in the Satori111\Data\Input folder, one can enter it into the 
database by clicking the “Load” button (see Fig. 9). If the text file was prepared and read correctly, 
Satori111 will request the name for the new record (see. Fig. 10). You can use any sequence of 
characters for this name; the length should not exceed 100 symbols. Fig. 11 shows the main window 
after posting the new record. 
 

 
 

Fig. 9. Loading initial data from text file. 
 
 

 
 

Fig. 10. Request for the name of the new record. 
 
 

 
 

Fig. 11. Main window after posting new record. 
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Simultaneously with the new record posting, Satori111 performs calculation of the Saunders-White 
initial guess and displays and  in the appropriate fields at the top of the right-hand side of the 

main window. Now, one can start calculations of parameters of Sakuma-Hattori equation by clicking 
the “Compute” button at the bottom of the tabbed page “Calibration”. 

00 , BA 0C

 
 
 
 4.4. Calculation of Sakuma-Hattori Parameters 
 

Satori111 computes the parameters and C of the Sakuma-Hattori equation successively, using 

two independent approaches: the LM and the PSO methods. After clicking the “Compute” button, the 

window depicted in Fig. 12 will be opened.  

,, BA  

 

 

Fig. 12. The “Calculations” window before calculations. 

 

Before starting calculations, one can change settings for both methods: the Maximal Number of 

Iterations and the Tolerance for the LM method; the Number of Restarts and the Search Range for the 

PSO method. In most cases, the default values of theses settings guarantee the fast convergence of 

both methods. Click “Run”. Calculations using the LM method are almost instant. If convergence is 

not reached, the appropriate warning message will be displayed; usually, this indicates an error in the 

initial data. 

 

Right after displaying the results obtained by the LM method, Satori111 begins fitting using the PSO 

method. This process can take up to several minutes at the default settings. It is represented in text and 

graphic forms. The central graph displays the residuals LMLM TTd   (denoted by the blue squares) 
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and  (denoted by the red crosses), where PSOPSO TTd  T  is the true temperature of the calibration 

blackbody;  and  are its fitted values obtained by the LM and the PSO methods, respectively 

(see Fig. 13). When the PSO fitting is performed, the fitted temperatures, residuals, and the Mean 

RMS value are re-displayed at each step accompanied by an improvement of the objective function. 

LMT PSOT

 

Portion of the Sakuma-Hattori
curve

|dPSO||dLM|

 

Fig. 13. Absolute values of the fitting residuals. 

 

Fig. 14 shows the “Calculations” window after finishing the fitting. The coincidence of the fitted 

values within about 1 mK suggests successful determination of the Sakuma-Hattori parameters. One 

can save results in the database and use the saved parameters later on for any interpolation task based 

on the same set of reference points. If you don’t want to save results in the database, simply click 

“Close” and confirm that you decided to ignore the results obtained. 

 

 

Fig. 14. The “Calculations” window after completion the fitting. 
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If the absolute value of the difference between results obtained by the LM and the PSO methods is 

greater than 1-3 mK, it makes sense to check initial data and repeat calculations with the greater values 

of the Search Range and the Number of Restarts. 

 

User can interrupt the PSO process by clicking the “Stop” button. 

 

4.5. Temperature Interpolation with Satori111 
 

The “Interpolation” tabbed page was shown in Fig. 6. Click “Load” to populate the first column of the 

table from the text file. Configuration of such a file is very simple (see an example below): the first 

line must contain the integer number of signals for which the interpolation has to be performed, 

then - N lines of signals in the floating point form

N

at: 

 
11 // Number of signals 
1.0657607998996E-5 
1.22381158980552E-5 
1.41587190884201E-5 
1.59467495604791E-5 
1.82823504652206E-5 
2.04137679389895E-5 
2.30209423593449E-5 
2.54058415294502E-5 
2.83793602690818E-5 
3.12380396142741E-5 
3.44501551883256E-5 
 

 

 

Fig. 15. The tabbed page “Interpolation” for newly entered set of signals. 
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Multiple other examples can be found in the folder Satori111\Data\Input\Signals. Fig. 15 shows the 

“Interpolation” tabbed page for newly entered set of signals. If you need to perform interpolation only 

for several signals, one can enter them into the table manually, without composing the text file. 

 

After clicking “Compute”, the table will be populated with the interpolated temperatures, and the 

graph will be plotted. Data from the table can be saved in the text file by clicking “Save” (Fig. 16). 

 

 

Fig. 16. Saving the results of interpolation in the text file. 

 

Examples of such files can be found in the folder Satori111\Output\Interpolation. 

 

4.6. Working with Graphs 
 

All graphs in Satori111 are fully customizable.  

 

User can plot a magnified fragment of the graph: holding left mouse button depressed, drag the cursor 

right and downwards to zoom and left and upwards to unzoom.  To displace curves relative to graph 

axes, hold the left mouse button depressed and move cursor. To restore graph original position, draw a 

rectangle of arbitrary size by moving from the bottom right corner to the top left one while left mouse 

button remains pressed. 

 

Clicking the “Edit Graph” button below a graph calls the Graph Editor, which provides comprehensive 

access to the properties of the graph via intuitive graphical user interface. The Graph Editor gives the 

possibility to edit individual curves (series) and all major elements of the graph (points, axes, legend, 
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title, etc.), copy and save series values in formats of text (ASCII) file, MS Excel spreadsheet, HTML 

and XML tables, copy to clipboard, save in the file, and print the graphs (see screenshots in Figs. 17-

19). 

 

  
 

Fig. 17. Graph Editor: manipulating with data series. 

 

 
 

Fig. 18. Graph Editor: editing graph titles, axes, and legend. 

 

 
 

Fig. 19. Graph Editor: exporting and printing ability. 
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