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Monte Carlo method in optical radiometry

A. V. Prokhorov

Abstract. State-of-the-art in the application of the Monte Carlo method (MCM) to the computational problems
of optical radiometry is discussed. The MCM offers a universal technique for radiation transfer modelling based
on the stochastic approach. Developments of the original MCM algorithms and software for calculation of
effective emissivities of black bodies, absorption characteristics of cavity radiometers and photometric properties
of integrating spheres are used for designing advanced optical instruments. The capabilities of the developed
software are illustrated by several examples. The techniques of convergence improvement and special time-saving
algorithms are outlined.

1. Introduction

The computing problems of optical radiometry relating
to radiative-transfer analysis arise at the stage of design
of radiometric systems and during the investigation of
their metrological characteristics. For these problems,
as a rule, it is possible to build a reasonably adequate
mathematical model and to write an equation for
the radiation-field characteristics in a general form.
However, if the system has a sophisticated geometry,
or the characteristics of the interaction of the radiation
with its elements depend on its conditions of incidence
and spectral composition, the solution of the radiative
transfer equations by conventional methods becomes
extremely difficult and often impossible. In these cases,
the MCM can prove to be the only way to solve the
problem.

The use of the MCM in optical radiometry is
based on a probabilistic treatment of the interaction
of radiation and matter. This approach allows the
construction of a stochastic model of the system in
question and an estimation of its parameters to be made
after a large number of stochastic-process realizations.
This process may be defined as the passage of a
separate ray (or particle – in terms of geometrical
optics, the difference is only terminological) all the
way from the radiation source to the detector. The
accuracy of the solutions obtained is determined
by the number of realizations of the stochastic
process, and, therefore, progress in computer hardware
continues to expand the circle of problems in optical
radiometry that can be successfully resolved by using
the MCM. These problems include calculation of the
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absorption characteristics for the cavities of thermal-
radiation detectors and of the effective emissivities of
black-body radiators, evaluation of the quality of stray-
radiation traps, and modelling of multiple reflections in
integrating spheres.

Whatever the algorithm of radiation-transfer
statistical modelling, it includes a model of the radiating
characteristics of a surface, block of ray tracing, and
set of recipes, allowing one to improve the convergence
of computing, or to reduce the time needed for these
calculations.

The objective of this paper is to analyse the current
state of statistical modelling of radiometric systems and
their components, describe basic ideas and algorithms of
the MCM in optical radiometry, and briefly review the
results obtained. As the space available does not permit
every aspect of the Monte Carlo method as applied to
optical radiometry to be discussed in detail, we only
consider several practical implementations and the most
interesting results of numerical experiments achieved.

2. Stochastic approach to optical radiation transfer

2.1 Statistical weights

The conventional method of modelling the interaction
between radiation and matter can be described as
follows. If and are the absorptivity and reflectivity,
respectively, of any opaque body then, when
the ray interacts with the body surface, the program
generator of pseudo-random numbers produces the next
pseudo-random number from a sample uniformly
distributed on the interval . If , then the
ray reflection by the surface is registered. Otherwise,
the absorption is registered, and the ray trajectory is
broken off. With low reflectivity values and the need
to take into consideration multiple reflections (these are
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the conditions that occur inside the cavities of black-
body radiators and thermal-radiation detectors), the use
of the conventional scheme leads to the overwhelming
majority of rays being absorbed, so that they make
no contribution to the resulting statistics. The method
of statistical weights can provide a good alternative
to the conventional scheme. According to this method,
a weight = 1 is assigned to each ray before the first
interaction. With each reflection, the statistical weight
is multiplied by the reflectivity value . The trajectory
ends if the statistical weight becomes smaller than the
pre-specified uncertainty of calculations or if a sufficient
number of reflections is achieved. There is a strict proof
of the fact that the variation of the result obtained by
using the method of statistical weights is always less
than that obtained by using the conventional scheme,
provided that the number of realizations is the same [1].

In addition to the statistical weight, some other
characteristics of simulated radiation can be associated
with each ray. For example, in spectral-radiance
calculations, the initial spectral radianceλ calculated
in accordance with the spatial, angular and spectral
distributions of source radiance, can be assigned before
the ray tracing. The spectral radiance of a ray at any
point of the trajectory can be calculated as the product

λ . If the spectral dependencies are calculated,
and the angular distributions of the surface radiating
characteristics do not depend on the wavelengthλ, it is
possible to use a time-saving algorithm by associating
a set of wavelengthsλ and corresponding sets of
statistical weights λ and spectral radiances

λ λ , λ to each ray. At each
reflection, the elements of the array of statistical weights
will be multiplied by the reflectivity values at the
appropriate wavelengthλ , and the current values of
the spectral radiance are given by .

2.2 Models of optical characteristics

The adequacy of the model chosen for the optical
characteristics determines the reliability of results
obtained by using the MCM in solving optical
radiometry problems. The reflection characteristics
of any surface are completely determined by its
bidirectional reflectance distribution function (BRDF).
Because of the difficulty of BRDF measurements and
the need to store the large arrays of measurement
information, often only spectral dependencies of
normal-hemispherical reflectivities are available for
opaque bodies. The most frequently used elementary
diffuse model assumes that the intensity of radiation
reflected by a surface obeys Lambert’s cosine law
and that the diffuse reflectivity does not depend on
the radiation angle of incidence. The direction of the
reflected ray in a diffuse model is set by the polar angle

and azimuthal angle in a local spherical system of
coordinates, the polar axis of which is collinear with
the normal to the surface at the ray reflection point. If

and are random numbers, thenand can be
modelled by the following equations [2]:

p
(1)

The choice of a diffuse model for reflected radiation
imposes one restriction on the model for emitted thermal
radiation: according to the reciprocity theorem and
Kirchhoff’s law, the emissivity should not depend on
the angle of observation.

The second frequently used simple model of
reflection is a specular one, which assumes that the
specular reflectivity is independent of the radiation
angle of incidence. The isotropic specular-diffuse model
is a superposition of the two previous models. An
additional characteristic of the surface is its diffusivity

:

(2)

where is the directional-hemispherical reflectivity at
the same angle of incidence. If the next random number

, then diffuse reflection is assumed; otherwise,
specular reflection is assumed.

The anisotropic three-component model is more
general and powerful. The retro-component, the
direction of which coincides with the direction of the
incident radiation, is added to the specular and diffuse
components of the reflection (see Figure 1). Unlike the
previous models, this one allows the components of the
reflectivity – diffuse, specular and retro – to be arbitrary
functions of the angle of incidence. Let us introduce
the following parameter:

(3)

Reflection is assumed to be diffuse if , specular
if , and retro if .

Figure 1. Anisotropic three-component reflectance model.
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2.3 Ray tracing

Ray tracing between opaque surfaces is reduced to a
consecutive search of points of ray interaction with
those surfaces. If is the position vector of the ray
starting point, is the vector of the ray direction with
unit length, and is the equation describing the
surface, then it is easy to find the position vectorof
the point of ray intersection with the surface by solving
the following system of equations:

(4)

where is a parameter. If the surface is described
by a quadratic equation, the extraneous solutions must
be eliminated. When the system is formed by several
surfaces described by various equations, the system (4)
must be solved for each surface and the value of
chosen such that, first, it is appropriate for any surface
included in the system and, second, it corresponds to
the lowest positive value of parameter.

3. Practical implementation of Monte Carlo
algorithms

3.1 Effective absorptivity of cavity radiation detectors

Cavity thermal detectors of radiation are widely used
in radiometry and photometry because of the low
spectral selectivity of cavity absorption. The effective
absorptivity of a cavity depends on its geometrical
parameters, the spectral and angular absorption
characteristics of the internal walls, and the cavity
irradiation conditions. The MCM is an indispensable
tool for design, modelling and optimization of cavity
radiation detectors.

The paper by Polgar and Howell [3] can be
considered to be the first study devoted to the
application of the MCM in direct relation to radiometry.
Despite their low-performance computer and the
imperfection of the proposed algorithm, the authors
were able to obtain angular distributions of the radiation
reflected by a diffuse conical cavity exposed to oblique
irradiation and to calculate the effective absorptivity of
the cavity.

Steinfeld [4] has applied the MCM to calculation of
the absorptivity of a specular-diffuse, spherical-cavity
radiation detector. Mahan and Eskin [5] have described
the statistical modelling of radiation-flux distribution
over the walls of a cylindro-conical, thermal-radiation
detector.

We demonstrate the applicability of the Monte
Carlo approach by taking as an example a thermal-
radiation detector with a conical cavity irradiated by
a collimated radiation beam, with the axis of the
beam collinear with the cavity axis and the radius
determined by an external diaphragm (Figure 2). The
internal surface of the cavity has an absorbing coating

Figure 2. Conical cavity irradiated by collimated beam.

for which we use the isotropic specular-diffuse model
of reflection.

We calculate the effective emissivity of the cavity
and the distribution of radiation-flux density absorbed
by the cavity walls. Such distributions must be taken
into account when choosing the location of the
temperature sensor and for optimization of the heating-
element positioning in case the detector is operated
with substitution of the absorbed power by electrical
power. For modelling purposes, we divide the cavity
surface into ring zones of equal area and then sum up
the statistical weights of the absorption in each zone
after multiple reflections of the ray in the cavity.

Relative distributions of the absorbed-flux density
along the generatrix of the conical cavity are shown
in Figure 3 for , , ,
with the absorptivity of the internal walls
and for various values of diffusivity . In numerical
experiments, 106 rays were used, with their traces
stopped if the statistical weight became less than 10–4.
The cavity generatrix was divided into 200 ring zones.

Figure 3. Relative distributions of absorbed-flux density
along the generatrix of a 15� conical cavity for (see
Figure 2) 0 1 and absorptivity .
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For we obtain ideal diffuse reflection,
yielding a smooth distribution of absorbed fluxes
over the initially irradiated zone and “tails” at the
edges of that zone due to the multiple reflections.
After the appearance of the specular component, the
distribution over the initially irradiated zone turns out
to be essentially non-uniform. For the purely specular
reflection, the distribution of absorbed fluxes represents
a step function.

As elementary geometric considerations show, the
boundary position of the first step is determined by
the penetration depth of the extreme beam rays in
the cavity. The height of this step is determined by
absorption of the rays at the first and last (12th)
reflections. The steps of the distribution located near the
cone vertex are formed by absorption of combinations
of rays which have undergone different numbers of
reflections. The appearance of the reflection diffuse
component smoothes out the stepped profile of the
distribution. The “tails” of the distributions in the area
not subjected to the initial irradiation are observed for
all non-zero values of . They become smaller as the
reflection from the cavity walls approaches a perfectly
specular character.

Simple summation of the statistical weights
absorbed by the whole cavity surface (or even
calculation of the statistical weights of rays leaving the
cavity after multiple reflections) enables one to calculate
the effective absorptivity (or effective reflectivity) of the
cavity. Figure 4 shows the normal effective absorptivity
of a 15 conical cavity as a function of the absorptivity
of the internal wall coating for various values of
diffusivity .

Figure 4. Normal effective absorptivity of a specular-diffuse
conical cavity as a function of absorptivity of cavity walls
for various values of diffusivity and for 0 1 .

3.2 Black-body radiators

For some considerable time, cavity radiators have
been successfully used as reference sources whose
radiation characteristics can be calculated by using the
Planck and the Stefan-Boltzmann laws. Generally, the
effective emissivity depends on the cavity geometry,
the temperature distributions and optical characteristics
of the cavity internal surface, and the observation
conditions. Effective emissivity calculations present a
non-trivial problem even in the case of cavities having
elementary geometrical forms with diffuse internal
surfaces. For cavities of a complex form with surfaces
partially shading each other, the MCM can be the most
suitable tool for computing the radiation characteristics.

Heinisch et al. [6] have used the MCM to
calculate the hemispherical emissivity of a diffuse
conical cavity with a flat lid with an uncertainty of
about 0.0001. To accelerate the convergence, they
applied analytical integration to calculate the radiant
energy leaving the cavity at each act of emission
or reflection. The algorithm employed allowed them
to take into consideration the arbitrary temperature
distribution along the cavity walls, but it was impossible
to use it for calculation of the directional radiation
characteristics.

Ono [7, 8] has obtained important results for
the directional radiative characteristics of isothermal
specular-diffuse cavities used as reference sources
of infrared radiation. By applying the generalized
Kirchhoff’s law and the reciprocity theorem in the
computing algorithm, Ono studied cylindro-conical
cavities, a cylindrical cavity with a lateral hole, and
a system formed by a flat target and a hemispherical
mirror. Chu et al. [9] have applied a similar algorithm
to parametrical calculation of the effective emissivity
of a black body having cylindrical lateral walls and
an internal conical bottom in specular-diffuse reflection
conditions.

All the works listed above used the conventional
Monte Carlo technique which prescribes the truncation
of a trajectory in the case of ray absorption by the cavity
wall. In a series of studies [10-12], algorithms based
on the method of statistical weights were described
and successfully used for statistical modelling of the
effective emissivities of cavities formed by a number
of coaxial cylindrical and conical surfaces. In the
effective emissivity calculations, the optical reciprocity
theorem and the technique of inverse ray tracing were
used. A ray with statistical weight equal to unity was
directed from the point of observation into a cavity.
Its history was traced until it left the cavity after
reflections from the walls, or until its statistical weight
became less than the given value. We can consider the
last point of reflection to be a birth point of a ray
propagating in the opposite direction. By choosing the
reference temperature , and analysing the history
of a large number of rays, , one can evaluate the
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spectral effective emissivity of the cavity for the given
observation conditions and reference temperature:

λ λ

λ

λ (5)

where is the number of ray reflections in the-th
trajectory;λ is the wavelength; is the second constant
in Planck’s law and , and are the emissivity,
reflectivity and temperature, respectively, at the-th
point of reflection.

Figure 5 presents the calculated normal spectral
effective emissivities of the pyrographite black body
BB3200pg [13] with the temperature at the centre of the
base fixed at 3000 K; several temperature distributions
are considered, with temperature increasing linearly
in each case towards the edge of the base. A linear
decrease in temperature to 2950 K was set along the
cylindrical generatrix towards the isothermal lid. The
cylindrical radiating cavity has a length of 200 mm and
diameters of the cavity and the aperture of 37 mm and
22 mm, respectively. The same set of 105 trajectories
was used for modelling all six spectral curves. The
curve corresponding to the isothermal cavity lies
between the curves obtained for a temperature increase
towards the bottom edge, equal to 1.5 K and 3 K,
because the effective radiation – consisting of the
emitted thermal radiation of the non-isothermal bottom
for a temperature increase of about 2 K and reflected
radiation of the non-isothermal lateral walls – closely

Figure 5. Normal spectral effective emissivities of black
body BB3200pg for various values of linear temperature
increase towards the bottom edge. Reference temperature
is the temperature at the centre of the base (3000 K). The
temperature decreases along the lateral walls towards the
aperture, which is isothermal at 2950 K.

matches the radiation of the isothermal cavity at the
temperature K.

Test calculations for diffuse cavities [14-17] have
shown that a relative uncertainty for

is reached after tracing between 104 and
5 104 rays.

The MCM can be used for exact calculation of the
irradiance produced by an arbitrary black-body radiator
under given conditions (see Figure 6). For this purpose,
ray tracing through the external aperture into the cavity
is performed from a point located on the observation
plane. The radiation emitted by the external surface of
the cavity lid is assumed to be negligible. The spectral
irradiance of the point on the observation plane is
computed as

λ
p λ (6)

where λ is the radiance of the ray at the cavity
aperture; is the distance between the observation
point and the point of ray intersection with the external
aperture plane; is the angle between the-th ray
and the optical axis of the system; is the vignetting
function, which is equal to 1 if the ray hits the cavity
aperture during ray tracing from the observation point
through the external aperture; otherwise, it equals zero.

Figure 6. Scheme for calculation of irradiation distribution.

Figure 7 shows the spatial distributions of spectral
irradiance at a wavelength of 650 nm, produced by
a black body with mm, mm,

mm and the wall emissivity .
The cavity walls were assumed to be specular-diffuse
with . Other geometrical parameters of the
system are as follows: mm, mm,
and mm. The first curve corresponds to
the cavity having a constant temperature of K,
while the second and third curves relate to the cavities
with an isothermal bottom and a linear temperature
drop to 2475 K and 2450 K, respectively, along the
cylindrical generatrix towards the isothermal lid. Even
for the case of the isothermal cavity, the irradiance
distribution differs from that of the isothermal diffuse
disk replacing the cavity aperture. This is explained
by the higher effective emissivity of the part of the
cylindrical wall in close proximity to the bottom in
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Figure 7. Spatial distribution of spectral irradiance at
nm for (see Figure 6) 0 mm, 1 mm,

2 mm, 1 2 mm, 3 mm.
Curve 1, cavity is isothermal at K; curve 2, bottom
is isothermal at K, temperature decreases linearly
along lateral walls to K at the intersection with the
isothermal flat lid; curve 3, bottom is isothermal at K,
temperature decreases linearly along lateral walls to K
at the intersection with the isothermal flat lid.

comparison with the effective emissivity of the bottom,
caused by the specular component of reflection. The
temperature gradient along the lateral cylindrical wall
leads to a sharp decrease in the spectral irradiance away
from the optical axis (curves 2 and 3).

3.3 Integrating spheres

An extensive area for MCM application is the
modelling of integrating spheres: for reflectivity and
transmittance measurements [18], for use as a calibrated
diffuser [19], for flux comparison of various sources
of radiation [20], for building large-aperture uniform
sources, etc. Numerical modelling of integrating spheres
becomes even more important in the realization of the
lumen based on a black-body source and a spherical
integrator of the luminous flux [21].

The main difficulty in application of the MCM
in the modelling of integrating spheres is as follows.
The coating of the internal walls of the sphere has,
as a rule, a reflectivity very close to 1. This leads to
extremely slow convergence of the computing process;
to obtain three to four decimal digits in the computed
illuminance of sphere walls, one has to trace several
hundred successive reflections.

However, the sphere has an important property
that allows the calculation time to be reduced. If a
point on the sphere wall reflects in accordance with
Lambert’s cosine law, then the sphere internal surface
has constant illuminance. This fact makes it possible
to avoid use of the conventional modelling sequence,
employing generation of two random numbers
and , calculating angles and in accordance
with (1), calculating the vector coordinates in the
local Cartesian coordinate system, transforming to the
global Cartesian system, and searching for the point of
intersection between the reflected ray and the sphere
by solving the system of equations (4). Instead, the
random point uniformly distributed over the spherical
surface is generated by a known algorithm. The line
connecting this point with that of the previous reflection
will determine the direction of the diffuse reflection.
Acceleration of the convergence of the result for
computation of the photometric head illuminance can
be achieved by calculating the diffuse angle factors [2]
from the point of ray reflection to the radiation detector
except where it is shaded by a baffle.

3.4 Other radiometric applications
of the Monte Carlo method

3.4.1 Stray-light analysis

The MCM is successfully used in the optimization
of various stray-radiation traps [12, 22, 23]. There are
commercially available, MCM-based, software products
for analysing the stray radiation in optical systems
(ASAP, Breault Research Organization; GUERAP V,
Lambda Research Corp.). The most advanced programs
allow simulation of the real BRDF by splitting each
reflected ray into a large number (102 to 104) of
secondary rays. Each secondary ray contributes to the
characteristics of radiation calculated from the BRDF
of the reflecting surfaces. As a result, the trajectories
of rays become tree-like, and significant time on top-
performance computers is required for their sequential
tracing.

3.4.2 Transmittance of glass filters

Exact calculation of the spectral transmittance of
composite glass filters irradiated by non-collimated
radiation beams (for example, in the presence of a
diffuser) can be successfully performed by the MCM-
based code. Thus, it is easy to perform ray tracing
taking into account the reflections at the interface of
glasses with diverse refractive indices.

3.4.3 Overall simulation of radiometric
and photometric systems

The MCM allows modelling of the most sophisticated
radiometric systems [12] by coordinating the entrance
parameters of the subsequent part of the system with the
target parameters of the previous one. The system can
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have multiple sources and detectors of radiation with
scattering, refracting and reflecting elements placed
between them. A single model implemented in a
computer code can be used repeatedly for evaluation of
the system’s performance for various initial data sets.
The block structure makes it easy to model a system
even after the addition of new components; the entire
unit is then readily analysed.

4. Further development prospects

Significant progress in the complexity of soluble
problems and in the accuracy of the results obtained
has been achieved over the three and a half decades
of the application of the MCM to optical-radiometry
problems. This progress, however, is to be attributed
more to the growth of computer performance than to
improvements in computing algorithms. Analysis of the
present state of radiometric applications for the MCM
has shown that researchers in this area should focus on
the following important and still unsolved problems:

(a) Development of correct methods to describe
the experimental BRDF of real materials by a
simplified reflectance model (isotropic specular-
diffuse or anisotropic three-component model).

(b) Development of direct (without trajectory splitting)
methods to model directions of relected rays to
match the given BRDF.

(c) Development of convergence-acceleration methods
for algorithms to model multiple reflections in
systems with surfaces having a reflectivity very
close to 1.

(d) Creation of advanced MCM algorithms leaving the
framework of geometrical optics by inclusion of
diffraction [23] and polarization effects [24].

(e) Use of parallel computing systems and appropriate
algorithms to increase the modelling efficiency for
optical-radiometry problems.

The experience of intensive use of the MCM in adjacent
areas – such as radiative heat transfer, atmospheric
optics, and computer image modelling – can be
extremely useful for resolving these problems. We
have every reason to believe that use of the MCM
technique will allow the most important problems of
optical radiometry associated with radiation transfer to
be handled within the next ten or fifteen years.
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